Centre for High Energy Physics Faculty of Science University of the Punjab, Lahore Course Outline

Program	BSCP	Course Code	ACS 301	Credit Hours	3 (2+1Lab)
Course Title Computer Programming					

Course Introduction

The Computer Programming course is a gateway to the dynamic world of programming languages and software development. It covers data types, variable types, control structures, arrays, functions, pointers, user-defined data types, inheritance and object-oriented programming, and parallel programming with MPI. By the end of the course, students will have a solid grasp of programming fundamentals and be well-prepared for diverse coding endeavors, from software development to scientific computing.

Learning Outcomes

The course introduces the subject of Computer Programming. Its objectives are as following.

- 1. Studying the basic concepts of computer programming.
- 2. Learning to develop algorithms and its translation into programs.
- 3. Get familiar with programming Languages like C, C++, FORTRAN 90/Python etc.
- 4. Learning Debugging and testing programs and its documentation.

Course Content		
Week 1	Introduction to Flow charts	
	Flow charts of different Problems	
Week 2	Introduction to Algorithm	
	Algorithm of different problems	
Week 3	Programming Languages: Introduction to C, C++, C#, and Python:	
	Pre-processors, Code Editors, Compiler, Executor and Error handling	
Week 4	Data types, Variable types,	
week 4	Control structure: Selection Statements	
Week 5	Iteration/loop (For)	
week 5	Iteration/loop (while)	
Week 6	Iteration/loop (Do-while)	
WEEK U	Programs through For, while, and Do-while loops	
Week 7	(Problem Solving)	
vv eek /	(Problem Solving)	
Week 8	One Dimensional Arrays	
	Two Dimensional Arrays	
Week 9	Functions	

	Programs of different problems through functions		
Week 10	Pointers, Pointer of a functions		
	User-defined data types, Structures; Defining a structure, Defining a structure variable		
Week 11	structures within structures, structures as arguments of functions		
	Defining a class, creating objects of classes, Calling member functions of classes		
Week 12	Constructors and Destructors, Constructor overloading,		
	Objects as arguments, Returning objects from functions, static classes, Static class data types,		
Week 13	Inheritance; Derived and base classes, Types of inheritance, Accessing base class members		
	Abstract and concrete classes, Single and multiple inheritance, Ambiguity in multiple inheritance		
Wools 14	Virtual functions, Abstract classes, and virtual functions,		
Week 14	Friend functions, Friend classes		
Week 15	Static functions		
	Accessing class members with pointer		
Week 16	Introduction to parallel programming with MPI		
	Programming with MPI		

Textbooks and Reading Material

- 1. C Programming Language (2ndEdition), B. W. Kernighan, *Prentice Hall* (1988).
- 2. C++ How to program (9thedition), Paul Dietel and Harvey Dietel, *Pearson Education, Inc.* (2013).
- 3. Object Oriented Programming Using C++ (4thedition), Robert Lafore, *Sams Publishing* (2004).
- 4. Programming with C (2ndedition) Schaum Outlines Series, B. S. Gottfried, *McGraw Hill Press* (1996).
- 5. Fluent Python: Clear, Concise, and Effective Programming" by Luciano Ramalho (2015)

Teaching Learning Strategies

The instructor is required to make use of FORTRAN/C/C++/Mathematica/Python/C# to teach the concepts through visualization/antimutation and symbolic/numerical calculations. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Assessment

Sr. No.	Elements	Weightage	Details
1.	Midterm	35%	Written Assessment at the mid-point of the semester.
	Assessment		

2.	Formative Assessment	25%	Continuous assessment includes Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.
3.	Final Assessment	40%	Written Examination at the end of the semester. At least fifty percent of the question paper would involve new problems related to the concepts learned in the course. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.